Beta-Alanine: Might it be a Supplement of Choice for Masters Athletes?

Introduction

The use of dietary supplements in sports is widespread as athletes young and old are continuously searching for strategies to increase performance at the highest level. Beta-alanine is a supplement that is becoming increasingly popular over recent years. This review examines the available evidence regarding the use of beta-alanine supplementation and the link between beta-alanine and exercise performance in young and older people.

The Research

Beta-alanine supplementation is well-known to increase muscle carnosine levels. Carnosine is known to lower fatigue levelsand improve high-intensity exercise performance through buffering muscle acidity levels. It has been repeatedly demonstrated that chronic beta-alanine supplementation can increase intramuscular carnosine content. On the basis of its biochemical properties, several functions are ascribed to carnosine, of which intramuscular pH buffer and increasing the release of calcium in muscle to increase the force of muscle contraction are the most cited ones. In addition, carnosine has antioxidant properties, suggesting it could have a therapeutic potential in older athletes.

The suggested protocol for taking beta-alanine to increase muscle carnosine levels is taking up to approximately 4-6 gm per day over 4-10 weeks but in smaller regular doses in the day or using a slow-release tablet form. This is because taking more than 800 mg/day (approximately 10 mg/kg of body weight) has been shown to lead to parasthesia or a burning, tingling sensation in the skin. It appears that being an athlete in regular training increases the efficiency of the beta-alainine in increasing carnosine levels in muscles. Stopping ingestion  of the btea-alanine sees the carnosine levels return to pre-supplementing levels after 6-20 weeks. Maintenance of muscle carnosine levels appears to be maintained by beta-alanine intakes of about 1.2 gm/day.

What about the effect of beta-alanine supplementation on sports performance. Research suggest chronic beta-alanine supplementation increases muscle carnosine concentration leading to improved exercise performance in high-intensity exercise lasting 1-4 minutes after loading for 4 plus weeks. Some small but positive effect has been noticed in 2000m rowing performance (6-7 minutes all-out) but the effect drops off dramatically in longer endurance events. For example, in 2014, a study by Chung and others examined the effect of doubling muscle carnosine by supplementing with oral beta-alanine. Based on previous research that showed that muscle carnosine loading through chronic oral beta-alanine supplementation has been shown to be effective for improving short-duration, high-intensity exercise, the researchers wanted to see what effect it might have on one-hour cycling performance in athletes. 27 well-trained cyclists/triathletes were supplemented with either beta-alanine or a placebo (6.4 g/day) for 6 weeks. Time to completion and physiological variables for a 1-hr cycling time-trial were compared between pre-and post-supplementation. In conclusion, chronic beta-alanine supplementation in well-trained cyclists had a very pronounced effect on muscle carnosine concentration and a moderate buffering effect on the acidosis associated with lactate accumulation, yet without affecting 1-h cycling time-trial performance under laboratory conditions. Similarly, research has also shown that beta-alanine supplementation has no positive effect on repeat sprint performance such as that in road cycling or team sports.

In older non-athletes there is some evidence to suggest beta-alanine may have benefits on performance. Del Favero and others (2012) found that 3.2 gm/day of beta-alanine over 12 weeks improved time to exhaustion on the treadmill in 60-80 year old non-athletes compared to a control group. More recently, McCormack and others (2013) study examined the effects of an oral nutritional supplement fortified with two different doses of beta-alanine on body composition, muscle function and physical capacity in older adults. 60 men and women (age 70.7 ± 6.2 yrs) were randomly assigned to one of three treatment groups: 1) oral nutritional supplement (ONS; n = 20) (8 oz; 230 kcal; 12 g PRO; 31 g CHO; 6 g FAT), 2) ONS plus 800 mg beta-alanine (ONS800; n = 19), and 3) ONS plus 1200 mg beta-alanine (ONS1200; n = 21). Treatments were consumed twice per day for 12 weeks. At pre- and post-supplementation period, participants performed a submaximal cycle ergometry test to determine physical working capacity at fatigue threshold. Fat mass, total body and arm lean soft tissue mass were measured while muscle strength was assessed with handgrip dynamometry and 30-s sit-to-stand was used to measure lower body functionality. They showed that beta-alanine may improve physical working capacity, muscle quality and function in both older men and women. Previous research has also shown that carnosine levels in muscle decrease about 15-20% from youth to  middle-age with no decrease into older age. This might suggest that beta-alanine may have an even greater effect on performance than in younger people. However, no research to date has examined the effect of beta-alanine supplementation on performance in older male or female athletes.

Conclusions

On the basis of the high concentration of carnosine in human muscles, research supports it’s critical role in skeletal muscle physiology. Recent studies show that increasing carnosine levels through beta-alanine supplementation may improve muscle contraction forces and reduce muscle acidity levels in events lasting between 1-4 minutes.

While results from studies differ depending on the sample (e.g. young vs old; trained vs untrained), the most recent review of the research (Blancquaert and others, 2015), suggest the following:

  1. Chronic beta-alanine supplementation increases muscle carnosine concentration leading to improved exercise performance in high-intensity exercise lasting 1-4 minutes after loading for 4 plus weeks.
  2. Exercise training and co-ingestion of beta-alanine with meals can improve the efficiency of beta-alanine in increasing carnosine levels
  3. The exercise performance benefits of beta-alanine supplementing are equally effective in both trained and untrained individuals
  4. The increased muscle carnosine levels increase calcium release that excites muscle contraction. The increased carnosine also encourages a reduction in muscle acidity.

Sources: 1. Blancquaert, L and others (2015). Beta-alanine supplementation, muscle carnosine and exercise performance. Current Opinions in Clinical Nutrition and Metabolic Care, 18(1): 63-70. 2. Chung, W. and others (2014). Doubling of muscle carnosine concentration does not improve laboratory 1-hr cycling time-trial performance. International Journal of Sports Nutrition and Exercise Metabolism, 24(3): 315-324. 3. McCormack and others (2013). Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study. Experimental Gerontology, 48(9): 933-939. 4. Del Favero and others (2012). Beta-alanine (Carnosyn™) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids, 43(1): 49-56.